sábado, 29 de octubre de 2016

GASES



INTRODUCCIÓN

experimentaremos en esta unidad   que los gases son fluidos altamente compresibles, que experimentan grandes cambios de densidad con la presión y la temperatura, lo que los conduce a adoptar la forma y el volumen del recipiente que los contiene.
Realizaremos un laboratorio en el cual podremos observar y practicar sus diversas aplicaciones, ademas de conocer las diferentes leyes y conceptos vitales para realizar los ejercicios.


OBJETIVOS:


Conocer y diferenciar los diversos conceptos de gases

Conocer y diferenciar las Leyes de los Gases
Saber ante que circunstancias se debe aplicar cada Ley
Conocer las propiedades de los gases
Realizar correctamente cada ejercicio de acuerdo a las indicaciones y características que presente el 

gas para asi mismo hallar la variable que se nos esta solicitando
Conocer y diferenciar las formulas de cada Ley
Emplear principios matemáticos básicos (despejar ecuaciones)
Reforzar los conocimientos previos acerca de estas Leyes


MARCO TEORICO


Se denomina gas al estado de agregación de la materia en el que las sustancias no tienen forma ni volumen propio, adoptando el de los recipientes que las contienen. Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:

Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos.
 Las fuerzas gravitatorias y de atracción entre las moléculas son despreciables, en comparación con la velocidad a que se mueven las moléculas.
Los gases ocupan completamente el volumen del recipiente que los contiene.
Los gases no tienen forma definida, adoptando la de los recipientes que las contiene.
Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras.
Existen diversas leyes que relacionan la presión, el volumen y la temperatura de un gas.


 
ESTADOS DE AGREGACIÓN 


La materia se presenta en tres estados o formas de agregación: sólido, líquido y gaseoso. Dadas las condiciones existentes en la superficie terrestre, sólo algunas sustancias pueden hallarse de modo natural en los tres estados, tal es el caso del agua.








TEMPERATURA


La temperatura es una magnitud referida a las nociones comunes de calor medible mediante un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.





PRESION 

La presión (símbolo p)1 2 es una magnitud física que mide la proyección de la fuerza en dirección perpendicular por unidad de superficie, y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una línea. En el Sistema Internacional de Unidades la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de un newton (N) actuando uniformemente en un metro cuadrado (m²). En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.




VOLUMEN

El volumen corresponde a la medida del espacio que ocupa un cuerpo. La unidad de medida para medir volumen es el metro cubico (m3), sin embargo generalmente se utiliza el Litro (L).

El metro cubico corresponde a medir las dimensiones de un cubo que mide 1 m de largo, 1 m de ancho y 1 m de alto.

La temperatura influye directamente sobre el volumen de los gases y los líquidos:

Si la temperatura aumenta, los sólidos y los líquidos se dilatan.
Si la temperatura disminuye, los sólidos y los líquidos se contraen.




CANTIDAD DE GAS




La cantidad de gas está relacionada con el número total de moléculas que se encuentran en un recipiente. La unidad que utilizamos para medir la cantidad de gas es el mol.

Un mol es una cantidad igual al llamado número de Avogadro:

1 mol de moléculas= 6,022·1023 moléculas

1 mol de átomos= 6,022·1023 átomos








LEYES DE LOS GASES 


Ley de abogadro 




No fue hasta 1814 cuando Avogadro admitió la existencia de moléculas gaseosas formadas por dos o más átomos iguales. Según Avogadro, en una reacción química una molécula de reactivo debe reaccionar con una o varias moléculas de otro reactivo, dando lugar a una o varias moléculas del producto, pero una molécula no puede reaccionar con un número no entero de moléculas, ya que la unidad mínima de un reactivo es la molécula. Debe existir, por tanto, una relación de números enteros sencillos entre las moléculas de los reactivos, y entre estas moléculas y las del producto.
Según la Ley de los volúmenes de combinación esta misma relación es la que ocurre entre los volúmenes de los gases en una reacción química. Por ello, debe de existir una relación directa entre estos volúmenes de gases y el número de moléculas que contienen.
La ley de Avogadro dice que:
Volúmenes iguales de distintas sustancias gaseosas, medidos en las mismas condiciones de presión y temperatura, contienen el mismo número de moléculas.


LEY DE BOYLE

 






La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente, cuando la temperatura es constante. El volumen es inversamente proporcional a la presión: Si la presión aumenta, el volumen disminuye.



LEY DE CHARLES 


La ley de Charles es una de las leyes de los gases. Relaciona el volumen y la temperatura de una cierta cantidad de gas ideal, mantenida a una presión constante, mediante una constante de proporcionalidad directa.



LEY DE Gay-Lussac:




Fue enunciada por Joseph Louis Gay-Lussac a principios de 1800. Establece la relación entre la temperatura y la presión de un gas cuando el volumen es constante. La presión del gas es directamente proporcional a su temperatura: Si aumentamos la temperatura, aumentará la presión.


GASES IDEALES
La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). La energía cinética es directamente proporcional a la temperatura en un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.

En 1648, el químico Jan Baptista van Helmont creó el vocablo gas, a partir del término griego kaos (desorden) para definir las génesis características del anhídrido carbónico. Esta denominación se extendió luego a todos los cuerpos gaseosos y se utiliza para designar uno de los estados de la materia.

La presión ejercida por una fuerza física es inversamente proporcional al volumen de una masa gaseosa, siempre y cuando su temperatura se mantenga constante. o en términos más sencillos

A temperatura constante, el volumen de una masa fija de gas es inversamente proporcional a la presión que este ejerce. Matemáticamente se puede expresar así:

donde k es constante si la temperatura y la masa del gas permanecen constantes.

Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante k para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:

Las primeras leyes de los gases fueron desarrollados desde finales del siglo XVII, aparentemente de manera independiente por August Krönig en 18561 y Rudolf Clausius en 1857.2 La constante universal de los gases se descubrió y se introdujo por primera vez en la ley de los gases ideales en lugar de un gran número de constantes de gases específicas descriptas por Dmitri Mendeleev en 1874.3 4 5

En este siglo, los científicos empezaron a darse cuenta de que en las relaciones entre la presión, el volumen y la temperatura de una muestra de gas, en un sistema cerrado, se podría obtener una fórmula que sería válida para todos los gases. Estos se comportan de forma similar en una amplia variedad de condiciones debido a la buena aproximación que tienen las moléculas que se encuentran más separadas, y hoy en día la ecuación de estado para un gas ideal se deriva de la teoría cinética. Ahora las leyes anteriores de los gases se consideran como casos especiales de la ecuación del gas ideal, con una o más de las variables mantenidas constantes.

Empíricamente, se observan una serie de relaciones proporcionales entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez por Émile Clapeyron en 1834 como una combinación de la ley de Boyle y la ley de Charles.


LABORATORIO